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Abstract. Representation of the electromagnetic field in terms of dyadic Green functions leads to
the requirement to solve dyadic partial differential equations for the dyadic Green functions. While
a formal solution for the infinite-medium problem can be given in a straightforward manner for even
the most general, linear medium, the extraction of closed-form expressions is a complicated issue.
The existence of such expressions for the dyadic Green functions is closely linked to the factorization
properties of the determinant operator, which is associated with the dyadic differential operator of
the dyadic Green functions. This connection is investigated for a special type of homogeneous,
anisotropic dielectric medium.

1. Introduction

One of the standard solution methods of any linear field theory is the representation of the
fields—which may have scalar, vector or tensorial character—in terms of Green functions.
In classical electromagnetic theory, this mapping from the vector sources to the vector
electromagnetic field is facilitated by dyadic Green functions (sometimes also called Green
tensors). Consequently, the vector partial differential equations for the electromagnetic field
vectors are replaced by dyadic differential equations for the dyadic Green functions.

For the purpose of this communication we will consider the equation†

L(∇, ε ) · G(x,x′) = δ(x − x′)I . (1)

Therein, G(x,x′) is the dyadic Green function (specifically, of the electric type) pertaining
to frequency-dependent electromagnetic field phasors with a harmonic time dependence of
exp(−iωt). The implicit dependence on ω is suppressed henceforth. The Dirac delta function
is denoted by δ(x−x′) and L(∇, ε ) is a dyadic differential operator of second order given by

L(∇, ε ) = ∇ × ∇ × I − ω2µε. (2)

The specific form of (2) already incorporates the constitutive characterization of the medium in
which the electromagnetic process takes place. In this instance it is a homogeneous, anisotropic

† The notation in this paper is such that vectors are in bold face whereas dyadics are in normal face and underlined
twice. Contraction of indices is symbolized by a dot; that is, a · b represents

∑
i aibi , whereas A = ab is a dyadic

with elements Aij = aibj . The vectors to observation and source points are x and x′, respectively; the unit dyadic is
I . The superscript −1 indicates inversion of dyadics and differential operators.
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dielectric medium: the anisotropy is contained in a permittivity dyadic ε, whereas its magnetic
isotropy is described by a scalar permeability µ.

Radiation and scattering problems depend crucially on the availability of a solution of (1).
In particular, it is the infinite-medium solution that is of greatest interest and especially in
closed form. The term closed form indicates that G(x,x′) should be expressible through
simple mathematical functions (which will most often be scalar Green functions of second-
order Helmholtz-like operators) and derivatives and linear combinations thereof. It does not
include representations in terms of integrals—as (1) is linear, such representations can always
be achieved with spatial Fourier transforms.

The task of finding closed-form solutions of (1) becomes increasingly complicated the
more complex the medium is that is described by ε. The derivation of the infinite-medium
solution of G(x,x′) for an isotropic medium, where ε = εI and ε is a scalar parameter, is a
standard textbook example (see, e.g., [1]). When anisotropy is considered, the mathematical
analysis becomes considerably more involved. The simplest type of anisotropy is uniaxiality,
expressed by

ε
uni

= εaI + εbuu (3)

where εa , εb are two scalars and u is a unit vector. Closed-form expressions for G(x,x′)
for such a medium were first given by Chen [2]. Other mediums have yielded closed-form
solutions (also in the realm of bianisotropy, which adds magnetoelectric coupling to the simpler
anisotropic problem considered here) and the interested reader is referred to two reviews for
specific formulae [3, 4].

Further generalization leads to biaxiality [2, 5] with

ε
bi

= εaI +
εb

2
(um un + un um) (4)

where um and un are two unit vectors that are in general not parallel or anti-parallel (if they
are, (4) reduces to the uniaxial (3)). A closed-form expression for the infinite-medium dyadic
Green function of a biaxial dielectric medium has been elusive to date despite significant
efforts. Only expressions in terms of reduced integral representations or asymptotic/numerical
formulae have been obtained [6–9].

The failure to derive a closed-form, infinite-medium dyadic Green function for a biaxial
medium is not surprising in view of some results pertaining to the so-called determinant
operator of L(∇, ε ). An important step towards a closed-form solution is that the determinant
operator (see (8) for its definition), which is always of fourth order—a fact determined by the
very structure of the Maxwell equations—can be factorized into a product of two second-order
operators. The topic of factorization was investigated before and it was first stated in [10] (see
also [11–13] for extensions to bianisotropic mediums) that a factorization of the determinant
operator can be achieved if the dyadic permittivity ε has the structure†

ε
fact

= λI + ab (5)

where λ is a scalar and a, b are two vectors.
It must first be observed that the form (5) is only sufficient and not necessary for

factorization. Furthermore, the relation between factorization and the availability of closed-
form solutions is not clear. In fact, some years ago investigations of certain types of uniaxial
bianisotropic mediums provided an example where closed-form solutions for dyadic Green
functions could not be obtained despite factorization, first observed in [14] and explored
further in [15, 16].

† Equation (5) is a specialization of formulae given in [10, 11], where a more general anisotropic medium was
considered that also included a dyadic permeability.
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Therefore, the motivation for this paper lies in gaining a more thorough understanding
of the connection between factorization and closed-form solutions within the context of
anisotropic dielectric mediums. This will be done by investigating the dyadic Green function
of a medium with a special form of anisotropy.

2. An anisotropic dielectric medium

We shall thus consider an anisotropic dielectric medium described by

ε = εaI + εbum un (6)

where εa and εb are once again scalars and um and un are distinct unit vectors. The form (6)
is equivalent to (5) as can be seen without difficulty. Such a medium is not reciprocal as ε is
not equal to its transposed dyadic [17].

The uniaxial medium defined in (3) appears as a specialization of (6) when um = un. It is
mentioned parenthetically that application of this specialization at any stage in this manuscript
leads back to the correct expressions pertaining to a uniaxial dielectric medium. However,
(6) also has a connection to a biaxial structure. Upon decomposition into symmetric and
skew-symmetric parts one can rewrite (6) as

ε = εaI +
εb

2
(um un + un um) +

εb

2
(um un − un um). (7)

In (7), we recognize the first two terms on the right-hand side as having exactly the biaxial
structure of (4) whereas the last term has a typical gyrotropic form [18]. It should be said,
nevertheless, that neither the biaxial nor the gyrotropic medium can be obtained from (7) as
special cases because the last two terms on the right-hand side of (7) are intricately linked†.
In any case, these properties make the medium characterized by the permittivity dyadic (6) an
intriguing object for detailed investigation.

3. The dyadic Green function

3.1. Solution representation

In order to obtain a solution of (1) we use

L(∇, ε ) · L
adj
(∇, ε ) = L

adj
(∇, ε ) · L(∇, ε ) = HdetI , (8)

a relation that serves as the definition of an adjoint operator L
adj
(∇, ε ) and a scalar operator

Hdet. As mentioned previously, the latter is in general (i.e. for all linear mediums) a fourth-
order operator, which is often called the determinant operator due to the obvious analogy to
matrix algebra.

With the help of (8) a solution of (1) can formally be established in the form

G(x,x′) = L
adj
(∇, ε )G(x ,x′) (9)

where G(x ,x′) is a scalar Green function that must be calculated from

HdetG(x ,x′) = δ(x − x′). (10)

Indeed, (9) and (10) provide a solution representation not just for the operator L(∇, ε ) arising
from the special type of medium considered here but for the most general, homogeneous, linear,

† In [10], page 135, it is claimed that a structure of the form (6) ‘resembles (the constitutive dyadic of an) affinely
uniaxial (medium)’. Yet, with its skew-symmetric component, there does not appear to be a possibility that any affine
transformation can transform (6) into (3).
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bianisotropic medium (of course, the operator L and its adjoint L
adj

will then have different

specific form). It is a formal representation only, because (10) is in general not solvable
in closed form. Equally importantly, this approach dissociates G(x ,x′) too strongly from
L

adj
(∇, ε ); in other words, it is possible for certain types of mediums to find a closed-form

expression for G(x,x′) even though none exists for G(x ,x′).
Instead, we shall follow a slightly different avenue: upon substitution of (6) and usage of

the identity ∇ × ∇ × I = ∇∇ − ∇2I (∇2 is the Laplace operator), (2) becomes

L(∇, ε ) = −(∇2 + k2)I + ∇∇ − k2τum un (11)

where the abbreviations k2 = ω2εaµ and τ = εb/εa have been used. Standard methods now
permit the extraction of L

adj
(∇, ε ) and Hdet and we find

L
adj
(∇, ε ) = HmL

e
(∇, ε) − k2τ(∇ × un)(∇ × um) (12)

Hdet = −k2(1 + τum · un)HeHm. (13)

Therein we have introduced a dyadic operator

L
e
(∇, ε) = ∇∇ + k2(1 + τum · un)εaε

−1 (14)

where ε−1, the inverse dyadic of ε, is calculated as

ε−1 = 1

εa

(
I − τ

1 + τum · un

um un

)
. (15)

Also, there are the two scalar, second-order operators

He = ∇2 − τ

1 + τum · un

(∇ × um) · (∇ × un) + k2 (16)

Hm = ∇2 + k2. (17)

We note that Hm is a standard, isotropic Helmholtz operator due to the magnetic isotropy of
the medium whereas He is a Helmholtz-like operator. It is also apparent from (13) that, as
anticipated for the medium under consideration and in accordance with (5), Hdet does indeed
factorize into a product of two second-order operators.

Further manipulation then leads to the complete representation of G(x,x′):

G(x,x′) = 1

k2(1 + τum · un)
[L

e
(∇, ε)ge(x ,x′) + k2τM(x,x′)]. (18)

Here we have introduced a scalar Green function ge(x ,x′) that satisfies

Hege(x ,x′) = −δ(x − x′) (19)

and a dyadic function M(x,x′):

HeHmM(x,x′) = (∇ × un)(∇ × um)δ(x − x′). (20)

The following two sections will address the problem of finding solutions to (19) and (20).

3.2. The scalar Green function

To extract a solution of (19), we choose, without loss of generality [5], the following
representation for um and un:

um = ux un = ux cosφ + uy sin φ (21)
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with the consequence um · un = cosφ, while (ux,uy,uz) is the triplet of Cartesian unit
vectors. Denoting η = τ/(1 + τ cosφ) and indicating partial derivatives with subscripts, we
then have

He = ∂xx + (1 − η cosφ)(∂yy + ∂zz) + η sin φ∂xy + k2. (22)

The mixed derivative ∂xy may be eliminated by the orthogonal coordinate transformation

x = T · x =
( cos(φ/2) sin(φ/2) 0

− sin(φ/2) cos(φ/2) 0
0 0 1

)
· x (23)

amounting to a rotation of the coordinate system by an angle of φ/2 in the xy plane (bisecting
um and un). Consequently, (19) is transformed into

(ax∂xx + ay∂yy + az∂zz + k2)ge(x ,x′) = −δ(x − x′) (24)

with

ax = 1 − η cosφ sin2(φ/2) + (η/2) sin2 φ

ay = 1 − η cosφ cos2(φ/2) − (η/2) sin2 φ

az = 1 − η cosφ.

(25)

The scalar operator in the differential equation (24) is now just a scaled Helmholtz operator
and a solution can be derived without complications. Upon transformation back to the original
variables, the scalar Green function ge(x ,x′) can thus be given as

ge(x ,x′) = 1√
axayaz

exp[ikD(x,x′)]
4πD(x,x′)

(26)

where D(x,x′) is a modified distance function:

D2(x,x′) = T · (x − x′) · A−1 · T · (x − x′) (27)

with A = diag(ax, ay, az).

3.3. The dyadic function

There are two approaches to solving a dyadic fourth-order equation of the form (20) with a
product of two second-order scalar operators acting on the unknown function. In previous work
dealing with such differential equations, a spatial Fourier transform (in all three coordinates)
was employed and the arising integrals could then be explicitly evaluated by using cylindrical
coordinates in Fourier space [2] (see also [19]). Alternatively, a more direct method was
shown to lead to the same results, also using cylindrical coordinates—but in x space and
without making recourse to a Fourier transform [20].

However, where these procedures worked for uniaxial dielectric [2], as well as uniaxial
dielectric–magnetic [19] and certain classes of uniaxial bianisotropic mediums [21, 20, 16],
they fail here because the medium does not have rotational symmetry with respect to a specific
axis (in other words, cylindrical symmetry). That lack of rotational symmetry is easily apparent
from (20) both in the scalar operator He on its left-hand side and in the dyadic operator acting
on the delta function on the right-hand side. If and only if um = un, i.e. one specializes to
uniaxiality, is cylindrical symmetry restored.

Equally, using yet again the orthogonal coordinate transformation (23) only manages to
transformHe into the form (22) while the (isotropic) Helmholtz operatorHm remains invariant.
Further transformation of He into a form that does have cylindrical symmetry with respect to
one axis will modify Hm also into an operator with cylindrical symmetry—but the two axes to
which the symmetries of the transformed versions of He and Hm refer will not coincide.
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As a consequence, there does not appear to be a possibility of extracting a closed-form
solution for M(x,x′) from (20). The best that can be achieved is a representation of M(x,x′)
through three spatial Fourier integrals. One of the integrations can be performed by using
the method of residues. However, as such a representation does not qualify as a closed-form
solution in the spirit of our defined requirement above, we refrain from pursuing such an
approach.

It is however instructive to see the connection between M(x,x′) and the scalar Green
functions ge(x ,x′), given by (26), and its counterpart gm(x ,x′):

gm(x ,x′) = exp(ik|x − x′|)
4π |x − x′| (28)

which is a solution ofHmgm(x ,x′) = −δ(x−x′). Decomposition of the fourth-order operator
HeHm leads to

[(∇ × um) · (∇ × un)]M(x,x′) = 1

η
(∇ × un)(∇ × um)[gm(x ,x′) − ge(x ,x′)]. (29)

In expanded form, the partial differential operator acting on M(x,x′) in (29) is: − sin φ∂xy +
cosφ(∂yy + ∂zz).

Even though M(x,x′) cannot be explicitly found, some conclusions can be drawn for the
electric field itself. It follows from (20) that

HeHmun · M(x,x′) = 0 HeHmM(x,x′) · um = 0. (30)

For an infinite-medium solution the complementary function (of the defining differential
equation) is irrelevant and it follows thus that

un · M(x,x′) = 0 M(x,x′) · um = 0. (31)

The electric field E(x) is represented by

E(x) = iωµ
∫

x′
G(x,x′) · J(x′) d3x′ (32)

where J is the electric current density. It can therefore be seen that, for the component of E

parallel to un, G(x,x′) is fully expressed through the first term in the square bracket of (18)
and M(x,x′) is of no relevance for that field component. The same holds for fields generated
by the component of J parallel to um.

The fact that the dyadic functionM(x,x′) is related to the scalar Green functions ge(x ,x′)
and gm(x ,x′) through a differential equation (29) follows on from the scalar properties of
factorizable fourth-order operators. Consider a scalar Green function W(x ,x′) defined by

H(4)W(x ,x′) = δ(x − x′) (33)

where the fourth-order scalar partial differential operator H(4) can be factorized into a product
as per

H(4) = H1H2. (34)

Therein, H1 and H2 are two Helmholtz-like operators of second order with corresponding
scalar Green functions g1(x ,x′) and g2(x ,x′) defined by

Hngn(x ,x′) = −δ(x − x′) Hn = ∇ · a
n

· ∇ + λn (n = 1, 2) (35)

where a
1

and a
2

are constant dyadics and λ1 and λ2 are scalar parameters.
It follows from (33)–(35) that g1 and g2 are derivable from W in the form

g1(x ,x′) = −H2W(x ,x′) g2(x ,x′) = −H1W(x ,x′). (36)
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Expressing W through g1 and g2 is not so straightforward, however. One obtains

(λ1∇ · a
2
· ∇ − λ2∇ · a

1
· ∇)W(x ,x′)

= (∇ · a
1
· ∇)g1(x ,x′) − (∇ · a

2
· ∇)g2(x ,x′). (37)

The last relation is in general a differential equation, highlighting the fact that Green functions
of fourth-order operators do not simply ‘decay’ into Green functions of second-order operators.

Only in the very restricted situation where ∇ · a
1

· ∇ = ∇ · a
2

· ∇, i.e. a
1

and
a

2
have identical symmetric parts, does (37) reduce to the simple algebraic relation W =

(g1 − g2)/(λ1 − λ2), assuming λ1 �= λ2.

4. Conclusion

The medium considered here is characterized by two distinct axes (um and un, respectively).
It is thus more general than a uniaxial medium but falls short of the definition of a truly
biaxial medium. Its main interest arises from its status as the most general type of anisotropic
dielectric medium that, according to the sufficient condition (5), has a determinant operator that
is factorizable into the product of two second-order, scalar differential operators of Helmholtz
type.

The availability of such a factorization property is a key ingredient in the derivation of
closed-form expressions for dyadic Green functions. The determinant operators of all linear
mediums for which closed-form expressions exist to date have this property. The main results
of this paper are the derivation of the dyadic Green function representation (18), the explicit
calculation of ge(x ,x′) in (26) and the conjecture that the dyadic differential equation (20)
cannot be solved explicitly (in the case um �= un) and that thus no closed-form solution for
G(x,x′) exists. Based on this conjecture, two conclusions emerge.

(i) While all currently known closed-form dyadic Green functions are based on factorizable
determinant operators, factorization is not a sufficient condition for the existence of closed-
form, infinite-medium dyadic Green functions.

(ii) Within the class of anisotropic dielectric mediums, the uniaxial dielectric medium (or any
medium that can be reduced to such a medium by, for example, affine transformations)
remains the most general medium for which a closed-form, infinite-medium dyadic Green
function has been derived†.

A final point that is worthy of illumination contains the electromagnetic field in the source
region of the medium characterized by (6). The field in the source region (or the near zone)
is an important ingredient for homogenization theories of composite mediums. While some
mathematical approaches to its derivation require the explicit knowledge of dyadic Green
functions (see [23] for an up-to-date review), a Fourier technique is able to extract the field
in the source region as was shown for the most general, linear, anisotropic medium [24].
In [25]—where the results were further generalized to bianisotropic mediums—it was first
observed that in the key quantity that determines the field in the source region, the so-called

† This remark requires some clarification: closed-form dyadic Green functions have indeed been found for more
general types of anisotropic mediums. Yet, the price being paid for a larger parameter space of constitutive parameters
is that such formulae only become available when specific algebraic conditions between the parameters are fulfilled.
These conditions are motivated purely by mathematical necessities and not based on any fundamental symmetry or
other property of the medium. One such example is the gyrotropic dielectric–magnetic medium considered in [22].
The condition that permits a closed-form solution intricately links the permittivity and permeability parameters in a way
that is not recognized by any realistic model of gyrotropy. It also means that the existence of such an algebraic condition
does not permit reduction of the results to the well known gyrotropic dielectric or the gyrotropic magnetic medium,
respectively. While mathematically commendable, such derivations have therefore limited physical relevance.
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depolarization dyadic, any skew-symmetric parts in the constitutive dyadics are filtered out
and do not contribute to the field structure. This means in the present context that the medium
characterized by (6) has a source region field that is identical to that of the biaxial, dielectric
medium (4). This becomes immediately apparent if the alternative version of (6), which is (7),
is inspected: (4) and (7) differ only by a skew-symmetric part. Explicit formulae for the
depolarization dyadic of a biaxial dielectric medium—which thus also apply in full to the
medium considered here—in terms of elliptic functions can be found elsewhere [26].
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